联系方式

  • QQ:99515681
  • 邮箱:99515681@qq.com
  • 工作时间:8:00-21:00
  • 微信:codinghelp

您当前位置:首页 >> Java编程Java编程

日期:2021-05-08 10:11

University of Liverpool

Department of Computer Science

COMP124 – Computer Systems

Coursework 2 – Multi-Threaded Java Programming

Deadline: Thursday 13th May at 17:00

Weighting: 15%

Follow the instructions below to submit your work. Penalties for late work will be applied in accordance

with the Code of Practice on Assessment. The standard department marking descriptors apply to this

assessment.

IMPORTANT – How to Submit

The filename of a Java program must have the same name as the public class containing its main method.

To avoid compilation problems later on (and when we mark it) please stick to this naming scheme. If your

username is sgnabog and your student ID is 201355426, then…

? Your Java source file should be named sgnabog_201355426.java

? Your main class declaration should be public class sgnabog_201355426 { … }

Regardless of good programming practice, all the classes should be defined in one file. Submit just this

single .java file containing all the classes that make up your solution (via the assessment page on Canvas).

Please don’t submit any other documents. We can only mark your work if we can easily locate and open

the file. You will lose marks if we have to manually change your filename to compile and run your solution.

Overview

The purpose of this assessment is to test your ability to write a compact, multi-threaded Java solution

based on a simple producer-consumer problem. In brief…

? Potter A produces a pot at the rate of one every 5 minutes

? Potter B produces a pot at the rate of one every 6 minutes

? After producing a pot, the potter puts it on a shelf

? The shelf can only store a maximum of 5 pots at any one time

? The packer takes pots off the shelf at a rate of one every 4 minutes

? The packer cannot do any work if the shelf is empty

? The potters cannot make another pot until they have placed their current one on the shelf

Write a multi-threaded Java program that simulates the above scenario. You will need threads for each

potter, and another for the packer. Your program should continue until each potter has made 10 pots and

the packer has packed all 20 pots. As the program runs, it should output a commentary on what is

happening. An example is included at the end of this document. Your output doesn’t have to be identical,

and in fact you will get different output each time you run your program. You can change the wording if

you like, but the commentary must still cover all the important actions of each thread (and the shelf).

Useful Hints

You need to simulate time passing, so the potters and packer can work at the speeds shown above. The

sleep() method takes a parameter representing the number of milliseconds to sleep for. This effectively

pauses the thread for that length of time. Represent each minute as 100ms, just so the program runs a bit

faster.

try {

sleep(500);

} catch(InterruptedException e) {}

The code above will simulate taking 5 minutes to make a pot, so it should be included somewhere within

the run() method of one of the potters. The other potter should sleep for 600ms, and the packer should

sleep for 400ms.

Base your solution on the example code for the producer-consumer problem. Keep things as simple as

possible. At first, you might think that an array is a good way to represent the shelf, but this would actually

complicate things a lot. There is a really simple way to represent whether or not the shelf has room for

another pot, and you don’t really need any parameter to the insert() method because the pots don’t

need to exist as objects in the code.

A good, optimal solution will be fairly small, around 100 lines depending on how many comments you

include. If your code is significantly more than this, it’s an indication that you’re going down the wrong

path. Remember to include all the classes for the solution in a single source file.

Code Comments & Structure

Use the Java comment notation (comments start with // or are enclosed with /*…*/) to place useful

explanations within the code. However, do not write lengthy comments that get in the way of readability.

Include your student ID as a comment at the top of your code.

Structure and indent your code properly, so it’s easy to read and understand. Use meaningful variable,

class and method names. As you will be including multiple classes in the same source file, position them so

that the code is readable and makes sense from top to bottom.

Note that you do not have to write and submit a report for this assessment. Submit only a single .java

source file. Therefore, make use of comments to explain briefly what your code does.

Marking Breakdown

Your work will be marked according to the following criteria.

Style: 20% – Overall layout, presentation and structure of the code

Programming: 20% – Correctness and succinctness of the code

Concurrency: 40% – Efficient use of Java classes and threads to model the problem

Output: 20% – Accuracy and usefulness of output as the program runs

Development Environment

We will compile and run your solution on the command line (using the javac and java commands). You

can use whatever environment you like to develop your solution. As there are numerous ways to develop

Java code, we cannot provide technical support for anything other than basic text editor and commandline

usage.

Example Output

Ginny has started

Harry has started

Albus has started

Ginny is making a pot

Harry is making a pot

Albus is ready to pack

Shelf is empty (Waiting...)

Shelf inserted a pot and now has 1 pots

Harry has put a pot on the shelf

Harry is making a pot

Shelf removed a pot and now has 0 pots

Shelf inserted a pot and now has 1 pots

Ginny has put a pot on the shelf

Ginny is making a pot

Albus has packed pot 1

Albus is ready to pack

Shelf removed a pot and now has 0 pots

Shelf inserted a pot and now has 1 pots

Harry has put a pot on the shelf

Harry is making a pot

Shelf inserted a pot and now has 2 pots

Ginny has put a pot on the shelf

Ginny is making a pot

Albus has packed pot 2

Albus is ready to pack

Shelf removed a pot and now has 1 pots

Shelf inserted a pot and now has 2 pots

Harry has put a pot on the shelf

Harry is making a pot

Albus has packed pot 3

Albus is ready to pack

Shelf removed a pot and now has 1 pots

Shelf inserted a pot and now has 2 pots

Ginny has put a pot on the shelf

Ginny is making a pot

Shelf inserted a pot and now has 3 pots

Harry has put a pot on the shelf

Harry is making a pot

Albus has packed pot 4

Albus is ready to pack

Shelf removed a pot and now has 2 pots

Shelf inserted a pot and now has 3 pots

Ginny has put a pot on the shelf

Ginny is making a pot

Shelf inserted a pot and now has 4 pots

Harry has put a pot on the shelf

Harry is making a pot

Albus has packed pot 5

Albus is ready to pack

Shelf removed a pot and now has 3 pots

Albus has packed pot 6

Albus is ready to pack

Shelf removed a pot and now has 2 pots

Shelf inserted a pot and now has 3 pots

Ginny has put a pot on the shelf

Ginny is making a pot

Shelf inserted a pot and now has 4 pots

Harry has put a pot on the shelf

Harry is making a pot

Albus has packed pot 7

Albus is ready to pack

Shelf removed a pot and now has 3 pots

Shelf inserted a pot and now has 4 pots

Harry has put a pot on the shelf

Harry is making a pot

Shelf inserted a pot and now has 5 pots

Ginny has put a pot on the shelf

Ginny is making a pot

Albus has packed pot 8

Albus is ready to pack

Shelf removed a pot and now has 4 pots

Shelf inserted a pot and now has 5 pots

Harry has put a pot on the shelf

Harry is making a pot

Albus has packed pot 9

Albus is ready to pack

Shelf removed a pot and now has 4 pots

Shelf inserted a pot and now has 5 pots

Ginny has put a pot on the shelf

Ginny is making a pot

Shelf is full (Waiting...)

Albus has packed pot 10

Albus is ready to pack

Shelf removed a pot and now has 4 pots

Shelf inserted a pot and now has 5 pots

Harry has put a pot on the shelf

Harry is making a pot

Shelf is full (Waiting...)

Albus has packed pot 11

Albus is ready to pack

Shelf removed a pot and now has 4 pots

Shelf inserted a pot and now has 5 pots

Ginny has put a pot on the shelf

Ginny is making a pot

Shelf is full (Waiting...)

Albus has packed pot 12

Albus is ready to pack

Shelf removed a pot and now has 4 pots

Shelf inserted a pot and now has 5 pots

Harry has put a pot on the shelf

Shelf is full (Waiting...)

Albus has packed pot 13

Albus is ready to pack

Shelf removed a pot and now has 4 pots

Shelf inserted a pot and now has 5 pots

Ginny has put a pot on the shelf

Ginny is making a pot

Albus has packed pot 14

Albus is ready to pack

Shelf removed a pot and now has 4 pots

Shelf inserted a pot and now has 5 pots

Ginny has put a pot on the shelf

Albus has packed pot 15

Albus is ready to pack

Shelf removed a pot and now has 4 pots

Albus has packed pot 16

Albus is ready to pack

Shelf removed a pot and now has 3 pots

Albus has packed pot 17

Albus is ready to pack

Shelf removed a pot and now has 2 pots

Albus has packed pot 18

Albus is ready to pack

Shelf removed a pot and now has 1 pots

Albus has packed pot 19

Albus is ready to pack

Shelf removed a pot and now has 0 pots

Albus has packed pot 20


版权所有:编程辅导网 2021 All Rights Reserved 联系方式:QQ:99515681 微信:codinghelp 电子信箱:99515681@qq.com
免责声明:本站部分内容从网络整理而来,只供参考!如有版权问题可联系本站删除。 站长地图

python代写
微信客服:codinghelp