联系方式

  • QQ:99515681
  • 邮箱:99515681@qq.com
  • 工作时间:8:00-21:00
  • 微信:codinghelp

您当前位置:首页 >> Python编程Python编程

日期:2022-03-11 11:29

THE UNIVERSITY OF NEW SOUTH WALES

SCHOOL OF MATHEMATICS AND STATISTICS

MATH3161/MATH5165–OPTIMIZATION

CLASS TEST 1

TERM 1, 2020

(1) TIME ALLOWED – 50 Minutes

(2) TOTAL NUMBER OF QUESTIONS – 4

(3) ANSWER ALL QUESTIONS

(4) THE QUESTIONS ARE NOT OF EQUAL VALUE

(5) ALL STUDENTS MAY ATTEMPT ALL QUESTIONS. MARKS GAINED ON ANY

QUESTION WILL BE COUNTED. GRADES OF DISTINCTION AND HIGH DIS-

TINCTION WILL REQUIRE SATISFACTORY PERFORMANCE ON ALL QUES-

TIONS, INCLUDING STARRED QUESTIONS

(6) THIS PAPER MAY BE RETAINED BY THE CANDIDATE

All answers must be written in ink. Except where they are expressly required pencils may

only be used for drawing, sketching or graphical work.

MATH3161/MATH5165–OPTIMIZATION CLASS TEST 1 Page 2

1. [8 marks] Consider the feasible regions of two optimization problems

1 = {x ∈ R2 : x21 + 4x22 = 4, x1 ≥ 2x2 + 2};

2 = {x ∈ R2 : x21 + 4x22 ≤ 4, x1 ≥ 2x2 + 2}.

i) Sketch the feasible regions ?1 and ?2.

ii) Show that ?1 is not a convex set.

iii) Write ?2 in standard form.

iv) Show that ?2 is a convex set. State any results that you use.

2. [14 marks] Consider the problem of minimizing the function f

f(x) = 2x31x

2

2 4x31 + 3x21x22 ? 6x21

on R2.

i) Calculate the gradient ?f(x) and the Hessian ?2f(x) of f .

ii) Show that x?α =

[

0

α

]

is a stationary point of f on R2 for each α ∈ R .

iii) Find the other three stationary points of f on R2.

iv) Identify, as far as possible using Hessian information, the three stationary points

of f of part iii) as local minimizers, local maximizers or saddle points, etc.

v) Determine whether or not the stationary point x?α of part ii) is a local minimizer

of f for |α| < √2.

Determine whether the function f on the convex set ? is convex, strictly convex,

concave, strictly concave or neither.

4. [4 marks] Let G be an n × n symmetric matrix with the spectral decomposition

G = QTDQ, where Q is an n × n orthogonal matrix (i.e. QTQ = QQT = I),

D = diag(λ1, . . . , λn) is an n×n diagonal matrix whose diagonal elements, λ1, . . . , λn,

are the eigenvalues of the matrix G, and I is an n× n identity matrix.

i) Show that if G is positive semi-definite then λi ≥ 0, for i = 1, 2, . . . , n.

ii) Show that if λi > 0, for i = 1, 2, . . . , n, then G is positive definite.

NOTE: For all questions you must show all your working and give reasons for

all statements that you make.


版权所有:编程辅导网 2021 All Rights Reserved 联系方式:QQ:99515681 微信:codinghelp 电子信箱:99515681@qq.com
免责声明:本站部分内容从网络整理而来,只供参考!如有版权问题可联系本站删除。 站长地图

python代写
微信客服:codinghelp