Strathclyde Business School, finTech MSc
Becoming an effective technology analyst - fall 2018
Olivier Bauthéac
01/11/2018
As part of the fall 2018 iteration of the ‘becoming an effective technoloy analyst’ class of the Strathclyde
Business School finTech MSc program coursework, below are the instructions for your data-science finance
assignment. Examples solutions in both the R and Python programming languages will be provided in due
time.
Full stack data-science finance (small) project
Preprocessing (ELT)
Extract
Minimum required
In an excel woorkbook, query Bloomberg for historical (bdh) as well as contemporaneous (bdp) data for a
market index as well as a broad cross-section of U.S. stocks. Historical data should be retrieved from October
1
st 2016 to today at the daily frequency on individual ticker specific sheets (one sheet per name). All names’
contemporaneous data, on the other hand, should sit on a single sheet. The Bloomberg ticker for the market
index is ‘RAY Index’ while those for the corporation names are listed below:
BBG stock tickers
ADM US Equity CIVI US Equity GBX US Equity LIND US Equity SERV US Equity
AE US Equity CLGX US Equity GDI US Equity LZB US Equity SGA US Equity
AGCO US Equity CLR US Equity GHC US Equity MAN US Equity SITE US Equity
AJRD US Equity COMM US Equity GME US Equity MEI US Equity SMP US Equity
ALG US Equity CRL US Equity GOLF US Equity MLR US Equity SPXC US Equity
AMD US Equity CTB US Equity GPN US Equity MRC US Equity STRT US Equity
AMOT US Equity CTLT US Equity GTLS US Equity MTD US Equity SUPN US Equity
ASGN US Equity CTXS US Equity HFC US Equity MTZ US Equity TAST US Equity
ATRO US Equity DHI US Equity HOFT US Equity NC US Equity TMO US Equity
AVT US Equity DKS US Equity HPE US Equity NGVT US Equity TNET US Equity
AWI US Equity EBIX US Equity HURC US Equity NHC US Equity TPB US Equity
BBBY US Equity EEFT US Equity HWKN US Equity NUE US Equity UBNT US Equity
BFAM US Equity ELF US Equity HY US Equity OSIS US Equity UFPI US Equity
BID US Equity ELVT US Equity IAC US Equity OSK US Equity UFS US Equity
BIG US Equity EML US Equity IART US Equity PFGC US Equity USAK US Equity
BKNG US Equity ENTG US Equity IBP US Equity PGTI US Equity VLGEA US Equity
BLD US Equity ERI US Equity IDTI US Equity PKI US Equity VLO US Equity
BSET US Equity ETH US Equity INT US Equity PLPC US Equity VRSK US Equity
BWA US Equity FICO US Equity IOSP US Equity PRAH US Equity WBC US Equity
BYD US Equity FISV US Equity ITRI US Equity PSX US Equity WERN US Equity
CAL US Equity FL US Equity JLL US Equity RBC US Equity WGO US Equity
CBRE US Equity FLR US Equity KHC US Equity RS US Equity WRK US Equity
CENTA US Equity FLT US Equity KSU US Equity RXN US Equity XPO US Equity
1
BBG stock tickers
CHEF US Equity FTV US Equity LGND US Equity SCL US Equity ZBRA US Equity
The historical time series should include the following market & book data fields:
Field Bloomberg symbol
close price PX_LAST
book value per share BOOK_VAL_PER_SH
earnings per share TRAIL_12M_EPS
dividend per share TRAIL_12M_DVD_PER_SH
debt SHORT_AND_LONG_TERM_DEBT
equity TOTAL_EQUITY
current assets BS_CUR_ASSET_REPORT
current liabilities BS_CUR_LIAB
sales SALES_REV_TURN
Contemporaneous data on the other hand should include the number of shares outstanding, number of
directors on the board, number of women on the board, number of board meetings per year, long company
name and company description. Explore Bloomberg to find the corresponding field symbols.
Going further
Using VBA, make your workbook updatable. Ammend your workbook so that it retrieves up to date
data in one clic. I.e. if in the future you open the workbook you created today, the workbook should be
able to retrieve up to date data.
– Hint 1. Update doesn’t necessarily mean adding most recent values to an existing time series.
Requerying the whole data up to the most recent date would work as well.
– Hint 2. Inspect the BQL syntax in Bloomberg formula cells, ammend accordingly.
Using VBA, make your workbook flexible. Ammend your workbook so that it can retrieve data for any
set of stocks/indexes & market/book fields at various frequencies (year, month, week, day), from and
to any date. The user should only have to list the tickers/fields and set the parameters on one sheet.
– Hint 1. Object oriented programming could help; excel table objects in particular.
– Hint 2. Create an ‘update’ sheet with tickers list, parameters (frequency, start and end dates) and
fields. This sheet could also be used to host the contemporaneous dataset.
Using VBA, make your workbook fully portable. If you open your workbook without a live Bloomberg
connection you’ll notice you loose the contemporaneous dataset; try to fix that problem somehow.
– Hint 1. VBA events could help.
You now have a fully portable, customizable Bloomberg financial data extraction tool and now it’s time to
use it.
Load
Using R or Python (example solutions will be provided for both programming languages), load the workbook
data in memory. Organise the data in two dataframes, one for the historical times series, the other for static
(contemporaneous) data. The time series dataframe should have a two-level row index including tickers &
dates while columns should host the corresponding time series; the dataframe should broadly look like this:
## ticker Date PX_LAST BOOK_VAL_PER_SH TRAIL_12M_EPS
## 1: RAY Index 2016-10-04 1273.897 476.0300 58.4400
## 2: RAY Index 2016-10-05 1279.598 476.0500 58.4400
2
## 3: RAY Index 2016-10-06 1279.430 476.0500 58.4300
## 4: RAY Index 2016-10-07 1274.602 476.0700 58.4800
## 5: RAY Index 2016-10-10 1281.312 476.0800 58.4700
## ---
## 62692: USAK US Equity 2018-10-17 17.830 8.4359 0.7559
## 62693: USAK US Equity 2018-10-18 17.310 8.4359 0.7559
## 62694: USAK US Equity 2018-10-19 17.410 8.4359 0.7559
## 62695: USAK US Equity 2018-10-22 18.240 8.4359 0.7559
## 62696: USAK US Equity 2018-10-23 17.310 8.4359 0.7559
## TRAIL_12M_DVD_PER_SH SHORT_AND_LONG_TERM_DEBT TOTAL_EQUITY
## 1: NA 566.360 504.630
## 2: NA 566.370 504.650
## 3: NA 566.340 504.640
## 4: NA 566.360 504.660
## 5: NA 566.350 504.660
## ---
## 62692: 0 88.958 70.125
## 62693: 0 88.958 70.125
## 62694: 0 88.958 70.125
## 62695: 0 88.958 70.125
## 62696: 0 88.958 70.125
## BS_CUR_ASSET_REPORT BS_CUR_LIAB SALES_REV_TURN
## 1: 339.210 234.730 NA
## 2: 339.340 234.820 NA
## 3: 339.340 234.820 NA
## 4: 339.580 234.980 NA
## 5: 339.610 235.000 NA
## ---
## 62692: 78.798 71.077 135.381
## 62693: 78.798 71.077 135.381
## 62694: 78.798 71.077 135.381
## 62695: 78.798 71.077 135.381
## 62696: 78.798 71.077 135.381
The static dataset on the other hand should be row-indexed by tickers and have columns hosting the
corresponding static data fields. For static data, only numeric fields should be loaded with long company
name and description fields left to the excel workbook for reference.
Transform
Market betas
Minimum required
Using the most recent samples in the time series data, calculate the individual 1-year market betas for the
stocks. Show calculations and comment. Comments should include a detailled discussion on what market
betas are, what they represent for stocks as well as details about the corresponding model. Plot your results
as a histogram and comment. Hint: there are 252 trading days in a year.
Going further
Using all the time series samples, calculate the individual rolling 1-year market betas for the stocks. Randomly
select five stocks and display their corresponding rolling beta time series on the same lineplot.
3
Features interactions
Using the most recent samples in the time series dataset, for each name construct a set of feature
interactions that include the following popular financial ratios: price to book, price to earnings, dividend
yield and gearing. Show calculations and discuss these concepts from a corporate finance standpoint.
Explore this new dataset. Hint: use visualization tools.
Modeling
Minimum required
Cluster analysis (unsupervised learning)
Hierarchical clustering
After normalizing the ratios dataset above to zero means and unit variances, apply hierachical clustering
and draw the corresponding dendogram. What seems to be the optimal number of clusters for this dataset?
Explain.
K-means
Implement a two-cluster k-means analysis on this dataset. Explore the resulting cluster characteristics:
calculate the cluster specific means for each ratio. Comment on the results and propose labels for the
two classes. Hint: how would Warren Buffett most likely answer this?
Label individual names accordingly in a new ‘classes’ dataframe.
Going further
Classification (supervised learning)
Create a betas dataset that subsets the most recent (last sample date) samples from the rolling maket
betas dataset above. Merge the classes, ratios, static and betas datasets together.
Implement a classification analysis on the resulting dataset where the target is name’s class as attributed
above. Use various classifiers including logistic regression, k-nearest-neighbours, support vector machines,
decision tree, random forest and neural network (multi-layer perceptrons). Use 75-25% for training-test
sets split and 5-fold cross-validation.
For each model:
– Show training and test set confusion matrices and calculate corresponding precision & recall
indicators; comment. Your comments should include a discussion on precision and recall.
– Explain what the model does and how. Discuss model paramaters and how they contribute to
model fine-tunning.
– Find model optimal parameters using gridsearch and run model accordingly. Show corresponding
learning curves.
版权所有:编程辅导网 2021 All Rights Reserved 联系方式:QQ:99515681 微信:codinghelp 电子信箱:99515681@qq.com
免责声明:本站部分内容从网络整理而来,只供参考!如有版权问题可联系本站删除。