Homework 5
Import modules
from datetime import datetime
import pandas as pd
import matplotlib.pyplot as pyplot
Consider the following data points:
date tick_numbers
2016-05-01 10:23:05.069722 3213
2016-05-01 10:23:05.119994 4324
2016-05-02 10:23:05.178768 2132
2016-05-02 10:23:05.230071 43242
2016-05-02 10:23:05.230071 4234
2016-05-02 10:23:05.280592 4234
2016-05-03 10:23:05.332662 4324
2016-05-03 10:23:05.385109 1245
2016-05-04 10:23:05.436523 1555
2016-05-04 10:23:05.486877 543345
Create a dataframe ‘ts’
ts=
print ts
date tick_numbers
0 2016-05-01 10:23:05.069722 3213
1 2016-05-01 10:23:05.119994 4324
2 2016-05-02 10:23:05.178768 2132
3 2016-05-02 10:23:05.230071 43242
4 2016-05-02 10:23:05.230071 4234
5 2016-05-02 10:23:05.280592 4234
6 2016-05-03 10:23:05.332662 4324
7 2016-05-03 10:23:05.385109 1245
8 2016-05-04 10:23:05.436523 1555
9 2016-05-04 10:23:05.486877 543345
Convert ts['date'] from string to datetime. You can use ts.index.
ts.index=
Delete useless column with the command del
del
print ts
In [17]: print ts
tick_numbers
date
2016-05-01 10:23:05.069722 3213
2016-05-01 10:23:05.119994 4324
2016-05-02 10:23:05.178768 2132
2016-05-02 10:23:05.230071 43242
2016-05-02 10:23:05.230071 4234
2016-05-02 10:23:05.280592 4234
2016-05-03 10:23:05.332662 4324
2016-05-03 10:23:05.385109 1245
2016-05-04 10:23:05.436523 1555
2016-05-04 10:23:05.486877 543345
Print all data from 2016
Print all data from May 2016
Data after May 3rd, 2016
Remove all the data after May 2nd, 2016 using truncate
Count the number of data per timestamp
Mean value of ticks per day. You will use resample with a period of D
and a method of mean.
Total value ticks per day. You will use sum and a period of D
Plot of the total of ticks per day
Create another dataframe
np.random.seed(12345)
# create a dictionary
# df[‘ARCA’] = store np.random.randint(low=20000, high=30000, size=62)
# df[‘BARX’] = store np.random.randint(low=20000, high=30000, size=62)
# index = pd.date_range('4/1/2012', '6/1/2012')
# create the dataframe with the 3 components above
Print (df)
pd.DataFrame(volume,index=index).head()
Out[90]:
ARCA BARX
2012-04-01 24578 28633
2012-04-02 22177 26542
2012-04-03 23492 26554
2012-04-04 24094 21707
2012-04-05 24478 25568
Truncate the dataframe to get data (before='2012-04-04',after='2012-05-24')
Change the offset of the dataframe by pd.DateOffset(months=1, days=1)
Shift the dataframe by 1 day
Lag a variable 1 day
Aggregate into 2W-SUN (bi-weekly starting by Sunday) by summing up
the value of each daily volumw
Aggregate into weeks by averaging up the value of each daily volume
版权所有:编程辅导网 2021 All Rights Reserved 联系方式:QQ:99515681 微信:codinghelp 电子信箱:99515681@qq.com
免责声明:本站部分内容从网络整理而来,只供参考!如有版权问题可联系本站删除。