联系方式

  • QQ:99515681
  • 邮箱:99515681@qq.com
  • 工作时间:8:00-21:00
  • 微信:codinghelp

您当前位置:首页 >> CS作业CS作业

日期:2024-08-09 05:22

SUBJECT OUTLINE

24761 Data-Driven Insights

Subject description

This subject develops capabilities of storytelling with data to understand consumer behaviours and identify opportunities. Students learn about different data sources, ethical and cultural understanding, and considerations in primary data collection, key design principles of collecting primary data, how to extract and synthesise useful information from relevant primary and secondary data and garner important insights to drive performance and data-driven decision-making. Upon completion, students develop deeper understanding of the importance of storytelling in driving managerial decision making.

Subject learning objectives (SLOs)

Upon successful completion of this subject students should be able to:

1. Analyse various data sources to produce actionable insights

2. Apply storytelling skills to visualise and convey data insights in a form appropriate to the audience

3. Use principles of cultural diversity and social justice to produce responsible data-driven decisions

4. Critically evaluate the ethical considerations of using or collecting data about Indigenous peoples and communities

5. Evaluate the role that data plays in enhancing marketing decision-making in an increasingly complex business environment

Contribution to the development of graduate attributes

The subject contributes to the following graduate attribute(s):

· Social responsibility and cultural awareness

· Professional and technical competence

This subject also contributes specifically to develop the following Program Learning Objective(s) for the Master of Marketing:

. Critically evaluate and apply principles of cultural diversity and social justice to produce responsible marketing decisions (3.1)

. Critically reflect on and apply effective research and engagement practices when working with and for Indigenous peoples in a professional marketing context (4.2)

Teaching and learning strategies

The subject is based on dynamic and interactive lecture and workshop sessions.

The lectures involve critical debate and in-depth case deliberations; and the workshops are built around in-class exercises, case discussions and presentations. These classes will be supplemented with both printed and electronic learning materials and resources. The learning management system will be used to share information and encourage interaction between staff and students. Students will also use appropriate computer software such as spreadsheets and word processors to complete assigned tasks.

All students will be provided with the opportunity for initial feedback on their performance in the subject during the first four weeks of the semester.

Further feedback will be provided in relation to submitted assessment tasks. In addition, student groups will collaborate and engage in active learning tasks such as case study analysis, problem solving exercises and group discussions, to discuss their learning with their peers and they will receive constructive feedback on the assigned tasks.

Content (topics)

. Understanding different Data Types

Data Ethics

· Research methods in marketing

.   Data visualization

.   Data Insights

Data Storytelling


Assessment

In addition to all the assessment information given below, guidelines, instructions, and specific criteria for the assessment will be placed on Canvas at an appropriate time during the session. It is a requirement for each


Assessment task 1: Data Collection and Evaluation (Individual)

Intent: Task A: Data collection (20%)

Task B: Data Evaluation (20%)

Objective(s): This addresses subject learning objective(s): 1, 3, 4 and 5

Weight: 40%

Task:             Assessment Task 1A: Data collection Students should select an ASX listed company and design &

implement a survey to gather primary data about a marketing problem facing that organization. It is

strongly suggested that students use Qualtrics for their primary data survey. Students should also find five (5) secondary data sources that would also help to answer the marketing problem facing the

organizations. .

Assessment Task 1B: Data Evaluation Students will go through the following resources:

1.  NHMRC guidelines https://www.nhmrc.gov.au/about-us/resources/

ethical-conduct-research-aboriginal-and-torres-strait-islander-peoples-and-communities

2.  Lowitja Institute information Sheet on Indigenous Data Governance and Sovereignty

https://www.lowitja.org.au/icms_docs/328550_data-governance-and-sovereignty.pdf

3.  Australian Indigenous & Torres Strait Islander Service (AIATSIS) publication on Delivering Indigenous Data Sovereignty https://aiatsis.gov.au/publication/116530

Students will then critically reflect on the above and write a 1500-word report on the ethical

considerations and practical implications of using existing data gathered on Indigenous peoples (e.g.  ABS data). The report will include considerations around use of data to gain insights (e.g. how data is collected, what protocols were followed, how valuable/reliable it is, does it reflect the diversity and

complexity of Indigenous peoples etc.). Students should outline how they would use this knowledge to inform. their future professional capability as market researchers when working with and for

Indigenous Australians.

Length: Assessment Task 1A

1. Primary Survey Instrument with 10-12 questions. 2. Annotated survey instrument (25-40 words per annotation with rationale for the question and its format) 3. Secondary table of 500 words

Assessment Task 1B

1500 words

Due: Assessment Task 1A: 8 September, 2024 at 11:59pm Assessment Task 1B: 29 September, 2024 at

11:59pm

Criteria: Task A Criteria

. Appropriateness of company and marketing problemselected. . Appropriate application of survey design techniques

. Applicability of survey design to measure identified marketing problem

. Relevance of secondary sources Task B Criteria:

. Critical analysis of data source

. Depth of critical evaluation of ethical issues and implications of data collection

. Depth of reflection and application of learning to future professional practice when working with and for Indigenous Australians

Assessment task 2: Data Storytelling Presentation and Report (Individual)

Intent: Task A: Data Analysis and Storytelling Report (40%)

Task B: Video presentation (20%)

Objective(s): This addresses subject learning objective(s): 1, 2, 3 and 5

Weight: 60%

Task:              Assessment Task 2A: Data Analysis and Storytelling Report Students will use data and their

reflection from Assessment 1 to create an insightful slide deck about the company they chose to look at in Assessment 1. Using the gathered data, students will conduct basic statistical and visual

analysis of the primary and secondary data. Students should use data storytelling to provide insights about their data and integrate learning from their reflection report. A visualisation slide using an

infographic must be included. The report should use appropriate research methods in marketing to help interpret and convey completed data and information.

Assessment Task 2B: Video presentation

Using Canva or some other format, students will record their Part A slide deck as a presentation. The video can be from Kaltura, Canva or Zoom and must be uploaded onto Canvas.

Length: Assessment Task 2A: The slide deck should contain between 10 to 15 slides.

Assessment Task 2B: The video needs to be between 6 and 8 minutes long.

Due: Assessment Task 2A: 3 November, 2024 at 11:59pm Assessment Task 2B: , 24 November 2024 at

11:59pm

Criteria: Task A Criteria:

. Accuracy of data interpretation and analysis

. Appropriate and well-communicated data narrative.

. Appropriate selection and use of visualisations and infographics. . Feasibility of insights and recommendations

. Consideration of possible ethical and social issues related to data insights Task B Criteria:

. Ability to communicate data analysis and insights to a non-expert audience . Well-communicated data narrative

. Persuasiveness of communication



版权所有:编程辅导网 2021 All Rights Reserved 联系方式:QQ:99515681 微信:codinghelp 电子信箱:99515681@qq.com
免责声明:本站部分内容从网络整理而来,只供参考!如有版权问题可联系本站删除。 站长地图

python代写
微信客服:codinghelp