联系方式

  • QQ:99515681
  • 邮箱:99515681@qq.com
  • 工作时间:8:00-21:00
  • 微信:codinghelp

您当前位置:首页 >> Web作业Web作业

日期:2025-02-10 05:07

Design of Power Semiconductor Devices, ES4E8 assignment, 2023/24

Module Code

ES4E8

Module Title

Advanced Power Electronic Converters and Devices

Assignment Title

Design of Power Semiconductor Devices

Assignment

Weighting / Credits

30% coursework / 4.5 CATS

Submission Deadline

Noon Thursday Week 21 (22nd February 2024)

Intended Learning Outcomes (ILOs) Assessed

Intended Learning Outcome(s) (ILOs)

Task / Criterion / Section

LO1: Apply advanced concepts through the use of device physics in the context of device design. [M1, M2, M3, M4, M6]

In this assignment, there are three questions. Please answer all questions.

Question A [M1, M2, M3, M4, M6]

Question B [M1, M3, M4]

Question C [M1, M2, M4, M6]

Notes:

•   A total mark below 40% indicates that the ILOs have not all been met at threshold level;

•   A total mark in the range 40 - 48% indicates that the ILOs have all been partially met to at least threshold level;

A total mark of at least 50% indicates that the ILOs have all been met.

Submission Details

The submission details for this assignment are:

Deadline: 12 noon Thu 13 th February 2025.

Method: Online submission via Tabula.

Format of submission: A single .pdf file with a meaningful filename that would contain the student number, the module code, and assignment name, for example:

“1234567_ES4E8_Lab Report.pdf

Submission length: Maximum 2000 words. You will lose 5 marks per extra page over the limit.

Formatting instructions: Use a minimum 11-point Arial (or equivalent) font for the text, with 1.5 line spacing and 25 mm margins all round.

Note: Submissions should  be  of an  appropriate file size  and  students are  responsible for ensuring that work is uploaded successfully before the deadline. If there are technical issues when      submitting      online,       please      contact      the       Engineering      Student      Office (eng.eso@warwick.ac.uk).

Guidance and Referencing Style

It is serious Academic Misconduct to pass off the work of others (including peersor AI-based chatbots such as ChatGPT) as your own and you should not permit colleagues to copy from you. Sources must be appropriately and properly acknowledged everytime reference is made to  another’s  work,  using  the  Harvard  Referencing  system.  Failure  to  do  so  amounts  to plagiarism which  breaches  university  regulations and falls short of the Academic  Integrity expected in the department and university.

Find out more about the School of Engineering Referencing System here:

https://warwick.ac.uk/fac/sci/eng/eso/undergraduate_students/guidance/handbook/skills/s hb-2-04

There are also other types of academic offences including duplication or ‘self-plagiarism’ . Refer  to https://warwick.ac.uk/fac/arts/history/students/undergraduate/assess-plagiarism/ for further details.

Style. and Formatting Guide

Submissions are expected to conform. to professional standards on style and formatting, and guidance can be found here:

https://warwick.ac.uk/fac/sci/eng/eso/undergraduate_students/guidance/handbook/skills/s h-1-06/

Assignment Feedback

•   Your submitted report will be marked electronically. The marks of the various

sections will be provided as well as an outline of the answers of the various sections in order to identify where/how to improve.

Question A

A= (last two digits of your university ID number+450)

B= (last two digits of your university ID number×7+1000)

1.    Figure 1.1 shows the basic cell structure of a power MOSFET.

Describe the internal resistance components in the power MOSFET on-state operation as shown in

figure 1.2(a) and (b) and comment on their effect as the device voltage rating increases. [5%]

Figure 1.1. Lateral channel power MOSFET - device parameters.

Figure 1.2 (a) Planar power MOSFET and (b) Trench power MOSFET.

Table 1: Device parameters

2.    Calculate the on-state resistance % contribution at room temperature of each internal resistance component over the total on-state resistance for a “A”V breakdown rated MOSFET @ Vgate=15V,  Vthreshold= 6.4V and Vdrain=0.6V (where the value of “A” is defined above). Identify the most important resistance contributions.

Use the device parameters as given in table 1 (you may find reference [1], section 6.4 & 6.5 useful for this analysis).   [10%]

3.    Calculate the on-state resistance % contribution at room temperature of each internal resistance component over the total on-state resistance for a “B”V breakdown rated MOSFET @ Vgate=15V,   Vthreshold= 6.4V and Vdrain=0.6V (where the value of “B” is defined above). Identify the most important resistance contributions and discuss how these compare to your finding in part (3).

Use the device parameters as given in table 1 (you may find reference [1], section 6.4 & 6.5 useful for this analysis).    [5%]

4.    Using  MATLAB  (or  analogous  software)  discuss  how  the  variation  of  JFET  region  LJFET    (i.e  the distance between the two p-base regions LJFET= 2*LA) affects the performance of the device in part

(2) with specific reference to internal resistance components. Keep the cell width and channel length constant. Illustrate your answers by means of corresponding plots. [5%]

5.    Discuss how a 1.2kV breakdown-rated Silicon MOSFET device would alter the on-state resistance contributions as the temperature increases from room temperature to 125C° .  [5%]

6.    Discuss how the on-state and off-state performance differs between the Trench MOSFET and the

Planar MOSFET. Refer to Figures 1.2 (a) and (b) for comparison. [5%]

References

[1] Book “Fundamental of Power semiconductor Devices” B.J. Baliga, Springer International Publishing 2008.

Question B

The unipolar limit is the theoretical maximum current-carrying capability of a unipolar semiconductor device, such as a MOSFET, where only one type of charge carrier (either electrons or holes) contributes to conduction. This is usually represented as the relationship between the breakdown voltage vs the specific on-state resistance. The unipolar limit for Silicon is plotted in Fig.2.

An  abrupt  one-dimensional  P+N  diode  is  described  by  the  following  equations  for  the  maximum electric field (EM ) V/cm at the junction and the thickness of the depletion region (WD ) cm, as functions of the doping concentration (N) cm-3  and the applied reverse bias voltage (VR ):

Critical electric field (Ec) for Si, SiC and GaN materials is shown below:

Electron (μe) and hole (μ) mobility models for Si, SiC and GaN are shown below:


References

[1] Book “Fundamental of Power semiconductor Devices” B.J. Baliga, Springer International Publishing 2008.

[2] T. Hatakeyama, K. Fukuda and H. Okumura, "Physical Models for SiC and Their Application to Device Simulations of SiC Insulated-Gate Bipolar Transistors," in IEEE Transactions on Electron Devices, vol. 60, no. 2, pp. 613-621, Feb. 2013, doi: 10.1109/TED.2012.2226590.

[3] T. T. Mnatsakanov, M. E. Levinshtein, L. I. Pomortseva, S. N. Yurkov, G. S. Simin, and M. A. Khan, "Carrier  mobility  model  for  GaN," Solid-State  Electronics,  vol.  47,  no.  1,  pp.  111–115,  2003,  doi: 10.1016/S0038-1101(02)00256-3.

[4] J. A. Cooper and D. T. Morisette, "Performance Limits of Vertical Unipolar Power Devices in GaN and   4H-SiC,"   in IEEE   Electron   Device Letters,   vol.   41,   no.   6,   pp.   892-895,   June   2020,   doi: 10.1109/LED.2020.2987282.

Given the theory above:

1.    Derive and  plot the unipolar limit (breakdown voltage vs specific on-state resistance) for all three materials: Si, SiC and GaN, where the majority carrier is electrons. Clearly state equations used  to  plot  the  unipolar  limit  and  discuss  the  fundamental  differences  between  those materials. Note, that the breakdown voltage range should be within 100-10 000 V range. [10%]

2.    Using the mobility equations  provided above, plot the mobility vs doping for   p-type and n- type Si, SiC and GaN materials and discuss the differences between p-type and n-type Si, SiC and GaN materials in the context of their impact on power device performance [10%].

3.   Three semiconductor manufacturers, A,  B, and C, fabricate 650 V Si  MOSFET devices. The performance  of  these  devices  is  reported  in  Fig.  2.   Explain  the  difference  between  the performance of the device C compared to A and B. [10%]

Figure 2 Performance comparison of MOSFET devices from manufacturers A, B, and C.

Question C

Figure 3.1 shows the on-state characteristics of a 3.3kV Si and SiC PIN diodes at 25°C. Parameters of which are summarized in Table 2.

Table 2. Parameters for 3.3 kV Si and SiC PiN Diodes.

The 3.3 kV SiC Schottky diode has the following I-V equation:

Where Ais the Richardson’s constant equal to 146 A.cm-2K-2  and ΦBN  (eV) is the barrier height.

1.    Discuss which type of diode you would use for applications of 100 A/mm2.  (10%)

2.   Justify the  differences  of the  two  curves  given the  material  properties  (i.e.  Vo   value  and differential resistance (line curvature))? (15%)

3.    Identify  the  SiC  Schottky   diode  forward  voltage  drop  at  100  A/cm2    and   plot  the   I-V characteristics for the Schottky contact metals with ΦBN  equal to 0.6 eV, 1.0 eV and 1.5 eV. Discuss  how  the  selection  of  the   contact  metal  will   affect  the   on-state  and  off-state performance. (15%)

Figure 3.1: The on-state characteristics of a 3.3kV Silicon and Silicon Carbide PIN diodes at 25°C



版权所有:编程辅导网 2021 All Rights Reserved 联系方式:QQ:99515681 微信:codinghelp 电子信箱:99515681@qq.com
免责声明:本站部分内容从网络整理而来,只供参考!如有版权问题可联系本站删除。 站长地图

python代写
微信客服:codinghelp