联系方式

  • QQ:99515681
  • 邮箱:99515681@qq.com
  • 工作时间:8:00-21:00
  • 微信:codinghelp

您当前位置:首页 >> Web作业Web作业

日期:2024-11-27 02:10

EMS724: Finite Element Analysis Coursework: Part 1 (70%)

For this part, you are required to analyse either an Axisymmetric or 3D (solid) component using static analysis in ABAQUS. The aim is to model a realistic structure, perform a mesh convergence study, and interpret the results. The report should be no more than 5 pages, excluding the title page and, if necessary, appendix and references.

Your analysis should be clear, reproducible, and concise, and the report must include the following sections:

Report Structure

1. Abstract (10 marks)

Provide a short and concise summary of the report, detailing the objective, results, and key findings. It should give the reader a clear overview of the work you performed and conclusions found.

2. Introduction (15 marks)

Define the problem you are solving and provide the necessary background information. This includes:

.   A clear statement of the geometry of the component, the material properties, loading conditions, and boundary conditions.

.   Ensure that all necessary information is included so that someone can replicate your model.

.   If you reference sources for dimensions, materials, or other specifications, ensure they are correctly cited.

.   You should also analysis a parameter to improve design (e.g. different materials. rounded-off corners, or support placements). This is important for your education, but also it makes it realistic as models are used to improve designs, in addition to just analysing them. So explain what you are doing in the introduction section (this should only take a couple of sentences!).

3. Results (25 marks)

Present your analysis results, focusing on:

. Mesh convergence analysis:

Demonstrate that the solution converges as the meshis refined. Include graphs such as max stress vs. mesh size to illustrate this. This is so important in modelling analysis as you must never rely on a single calculation. Instead, perform multiple runs with increasing mesh resolution, comparing stresses, strains, or deformations at key points and make sure they converge. Hint: Mention any challenges due to mesh refinement limitations imposed by academic licenses, and explain how this might have affected your convergence results.

.   Discuss how changing the mesh type (triangular vs. quadrilateral or test Vs hex dominated meshes) and/or the polynomial order (linear vs. quadratic) affects the convergence results.

.   Show relevant output plots and explain the key findings, focusing on areas of high stress or potential failure.

.   Show how your parameter you changed affects the performance of the structure. For this, do not repeat the mesh convergence. Use a suitable mesh resolution from previous analysis and change your problem parameter with this mesh.

4. Conclusions (20 marks)

Summarise the key findings of your analysis.

.   Highlight the accuracy of your results and any recommendations for improving the model or conducting future studies.

.   If the results didn't fully converge due to software limitations, acknowledge this and suggest what could be done to overcome these issues in future analysis.

Important Hints and Guidelines

. Hint 1: Don't rely on just one calculation! Perform. a mesh convergence study by running multiple analyses with increasing mesh resolution, and compare key results like stress or deformation at important points in the structure.

.   Use graphs to illustrate convergence, such as max stress vs. mesh size.

.   Experiment with different polynomial orders and element types, and discuss which ones work best for your problem.

. Hint 2: Choose a model with moderate complexity, allowing for meaningful results without running into difficulties with mesh refinement due to software license limits.

.   Simple structures (like a single bar) will result in penalties due to insufficient complexity, but overly complex models may not converge within license restrictions.

. Hint 3: Presentation matters!

.   Avoid unnecessary screenshots from ABAQUS, poor-quality graphs, or untidy figures. Many student reports contain double figures of plots which is a total waste of space. Personally, I would try and limit it to within 6 solution plots.

.   Ensure all plots are properly labeled with axes, and keep the report organized and concise. Make sure I can read the legend in Abaqus – so often it is left too small.

.   Think of your report as something you'd present to a future employer; clarity and professionalism are key.

. Hint 4: Unit consistency is critical! Always use SI units (e.g., mm-N-MPa or m-N-Pa). Failure to use correct units can result in a deduction of up to 20 marks.

Optimisation Coursework: Part 2 (30%)

In this section, you will design and optimise using ATOM (Abaqus Topology Optimization Method) a 2D structure (e.g., a bracket) that supports a specified loading. Your task is to start from a generic domain (e.g., a rectangle) and apply appropriate boundary conditions and loading. The goal is to maximize stiffness while using only a percentage of the volume of the original domain, with VF (the Volume Fraction or % of the original structure) ranging from 10% to 40% in increments of 10%.

Additionally, you will investigate the effects of mesh resolution for VF = 30%, varying the mesh from, say, coarse (e.g., 20x20 elements) to fine (e.g., 200x200 elements).

The report for this part should be no longer than 800 words and should focus on summarising the setup and findings. Often in the workplace you are requested to provide very short reports that are quick to read by busy bosses. So this is a good skill to develop, I.e. fitting information into a limited space.

Part 2 Report Structure

1. Introduction & Results (15 marks)

. Problem definition: Introduce the 2D structure you are analyzing (e.g., a bracket or other load-bearing component). Briefly explain the loading conditions, boundary conditions, and the goal of maximizing stiffness under the constraint of reduced volume.

.   Clearly state the range of VF values you will explore (from 10% to 40% of the volume of the original domain).

. Topology optimization results: Present and summarize the results for each VF value (10%, 20%, 30%, and 40%). Focus on key findings, such as the stiffness achieved and the material distribution for each optimization run.

.   Use visual representations (figures showing optimised designs) to illustrate how the structure changes as the volume constraint is varied.

. Mesh resolution analysis for VF = 30%:

Discuss the effects of mesh resolution (e.g., coarse vs. fine mesh) on the optimization results for VF = 30%. Perhaps comment on the trade-offs between computational time and solution accuracy, and whether finer meshes lead to better-optimized designs or convergence.

.   You can include graphs or tables comparing key metrics like stiffness or computation time for different mesh resolutions.

2. Conclusion (15 marks)

.   Summarise the key outcomes of your optimization study. Highlight the best design achieved (i.e., which VF value produced the best stiffness-to-volume ratio).

.   Mention any challenges encountered during the optimization process, such as mesh

sensitivity or computational limitations, and suggest potential improvements for future analyses.

.   If relevant, provide insights into how the optimized structure could be improved or adapted for industrial applications. Hint: Think critically about the practicality of the optimized design in terms of manufacturability, cost, and material efficiency. If the optimized structure would be difficult to manufacture, suggest design improvements.

. Hint 1: Use SI units throughout the report (e.g., mm-N-MPa). Be consistent with units to avoid unnecessary deductions.

. Hint 2: Present your results clearly and concisely, focusing on key findings without

overwhelming the reader with unnecessary details. Given the word limit, focus on representative examples (e.g., one optimized design for each VF value and one example of coarse vs. fine mesh).





版权所有:编程辅导网 2021 All Rights Reserved 联系方式:QQ:99515681 微信:codinghelp 电子信箱:99515681@qq.com
免责声明:本站部分内容从网络整理而来,只供参考!如有版权问题可联系本站删除。 站长地图

python代写
微信客服:codinghelp