联系方式

  • QQ:99515681
  • 邮箱:99515681@qq.com
  • 工作时间:8:00-21:00
  • 微信:codinghelp

您当前位置:首页 >> Web作业Web作业

日期:2024-11-08 05:20

21-127: Concepts of Mathematics

Homework 7

• Your answers to the assigned problems below should be formatted as a PDF file and uploaded to Gradescope by Thursday, November 7 at 11:59 pm.  You can access Gradescope from the Canvas page.

• Your answers to the unassigned problems are not collected.  You can find solutions to these by clicking on the assignment on Canvas.

•  The points for each assigned problem are listed on the right-hand side and (should) sum to 25. An extra bonus point is awarded for submissions that are typeset with LATEX.

Unassigned Problems

1.    (a)  Use the Euclidean Algorithm to determine gcd(1819 , 3587).

(b)  Find (x, y) ∈ Z2  such that 1819x + 3587y = gcd(1819, 3587).

2.  Prove that for all n ∈ N, 5n + 3 and 3n + 2 are coprime.

3.  Let a, b ∈ Z, not both 0, and m ∈ Z+ .  Prove that gcd(ma, mb) = m · gcd(a, b).

4.  Find all integral solutions to the following linear diophantine equations, or state why none exist.

(a)  123x + 45y = 17 (b)  123x + 45y = 18

5.  Prove  that  if  a and  b are  relatively  prime  integers  then  gcd(a + b, a — b)  =  1 or 2  with gcd(a + b, a — b) = 2 if a and b have the same parity.

Assigned Problems

1.  Let a, b ∈ Z+ .  Using only divisibility properties  (material discussed in lecture prior to the discussion of prime factorizations), prove that gcd(a, b) · lcm[a, b] = ab.                                         [5 pts]

2.  Let a, b ∈ Z, not both 0, d = gcd(a, b), and c ∈ Z such that d j c.  Fix  (x0 , y0 ) ∈ Z2  such that ax0 + by0 = c.

(a)  Show that for all k ∈ Z, the pair (x0 + d/bk, y0  — d/ak) is a solution to the linear Diophantine equation ax + by = c.                               [1 pt]

(b)  Let s, t Z such that (x0 + s, y0 + t) is a solution to ax + by = c.  Show that there exists k ∈ Z such that s = d/bk  and t = — d/ak.                                   [4 pts]

3.  Prove that for all a, b ∈ Z+ , if a3  j b2  then a j b.                                     [5 pts]

4.  Prove that for all a, b ∈ Z+ , gcd(a + b,lcm[a, b]) = gcd(a, b).                                                             [5 pts]

5.  Prove that for all p ∈ N, ifp is prime and p > 3 then p2 ≡ 1  (mod 24).

Hint:  Consider using Euclid’s Lemma.                                                                                                          [5 pts]





版权所有:编程辅导网 2021 All Rights Reserved 联系方式:QQ:99515681 微信:codinghelp 电子信箱:99515681@qq.com
免责声明:本站部分内容从网络整理而来,只供参考!如有版权问题可联系本站删除。 站长地图

python代写
微信客服:codinghelp