联系方式

  • QQ:99515681
  • 邮箱:99515681@qq.com
  • 工作时间:8:00-21:00
  • 微信:codinghelp

您当前位置:首页 >> Web作业Web作业

日期:2024-11-08 03:11

Risk Management in Engineering (49006)

Assessment Task 1 – Topic and Case Study Analysis

Specification:

Weight

20%

Type

Individual

Length

Maximum 2000 words

Submission

•    Online through the Turnitin submission link on Canvas

•    Multiple attempts permitted until the due date, afterward the first submission is the last one

No FEIT assignment submission cover sheet is required

Similarity

There is no numerical threshold to  show   a student has plagiarized or not. The human academic checks for plagiarism. Turnitin can only  indicate where  and when a text appears similar to another text

Due date

Refer to the subject calendar

Objectives:

Incorporate the values of culture and history of Indigenous communities in risk analysis studies and the development of risk management plans

Identify stakeholders, boundaries and uncertainties in engineering projects and systems

Introduction:

Engineers  have an  important  role  in society. They are  responsible for designing, building or creating something based on a specification or guideline to meet a need. What they develop must function without any failure for its intended lifetime, especially a catastrophic  failure  that  can  result  in  loss  of  life  and  damage  to  property  and environment.

Engineering  is  about  managing  risks.  It  is  technically  impossible  to  remove  risk altogether and lowering risk commonly involves a substantial cost. Engineering as a profession progresses through both its successes and its failures. As a profession, we need to learn from failures. By analysing failures, engineers can learn what not to do, and how to reduce the chance of failure. This may seem paradoxical but is widely accepted. Failure often can spur on innovation.

In engineering, it is important to review failures, and mistakes. It is harder to learn from success, but you should always learn from failures. This is not the best practice in some engineering projects where the failure results in human and property damage; however, when a failure occurs it is very important to analyse it and learn from it. Failures have elements in common. The lessons that we learn from them can help to predict and avoid failures. A skill that all professional engineers need is the ability to predict and avoid failures no matter what their scale or magnitude from small or localised to large or widespread. Engineering failures are typically the result of:

•    Human factors – both ‘ethical’ and accidental failure;

•    Design flaws – typically a result of unprofessional or unethical behaviour;

•    Material failures;

•    Extreme conditions.

Engineering failures can be categorised based on the size of the impacted region, and the level of impact on the region.

Size of impact:

•    Localised: This type of failure will only have an impact on the immediate area where the incident occurs;

•    Widespread: Although the causing incident was localised, it has effects distributed over a large geographical area.

Level of impact:

•    Small: Minor injuries and property damage, may not result in loss of life;

•    Medium: Some loss of life, multiple serious injuries, or serious property damage;

•    Large:  Catastrophic failure, with extensive  loss of life, and severe irreparable property damage.

By analysing past failures, engineers can prevent future failures, both minor and catastrophic. It is often the catastrophic failure that receives professional and public attention, but as you will discover, catastrophic failures are comprised of multiple smaller errors in design, communication and/or judgement. Engineering is a constantly evolving discipline due to both advances in technology and the integration of lessons learnt through failures into laws, standards, work practices and technology.

Instructions:

1.   Find one case study  relevant to your educational  background. You can  use any sources on the net (For example, you can find real case studies herewww.csb.gov, by going to “investigations” tab where you can find final reports for industrial accidents).

2.  You will use the case study for Assessments 2 and 3 too. Therefore, please read Assessments 2 and 3 specifications too to make sure you select the case study with enough information for other assessments.

3.   For the case study:

Set a boundary of investigation

Identify sub-systems and components/equipment and draw an reliability block diagram (RBD).

Analyse the stakeholders and explore if the case study affected or was affected by Indigenous communities

Define the inherent risks

Describe in detail the causal chain (i.e. show causality from the root cause(s) to the failure event) and provide a causal diagram for each failure.

4.  All  content  must  be  written  without  grammatical  errors  and  should  be  fully referenced in IEEE style. You must have in-text referencing and include a list of references at the end of report. Please refer to Canvas, Module 6 for referencing guidelines.

5.  You can download Endnote from UTS library for bibliography management:

https://www.lib.uts.edu.au/help/referencing/endnote

6.  You can download the IEEE referencing style. for Endnote:

https://endnote.com/style_download/ieee/

7.   Marking criteria for your report are as follows and rubric is available on Canvas.

Marking Criteria

Section

Weight

Introduction (topic, aim, importance, structure)

5

Case description and setting the boundaries

15

Sub-systems, components/equipment, RBD

20

Stakeholder analysis including Indigenous communities

15

Inherent risk determination

10

Causal chain analysis

10

Summary

5

Structure and presentation

Well-structured without grammatical errors

10

In-text referencing using IEEE style

10

Total

100



版权所有:编程辅导网 2021 All Rights Reserved 联系方式:QQ:99515681 微信:codinghelp 电子信箱:99515681@qq.com
免责声明:本站部分内容从网络整理而来,只供参考!如有版权问题可联系本站删除。 站长地图

python代写
微信客服:codinghelp