联系方式

  • QQ:99515681
  • 邮箱:99515681@qq.com
  • 工作时间:8:00-21:00
  • 微信:codinghelp

您当前位置:首页 >> Algorithm 算法作业Algorithm 算法作业

日期:2025-10-30 04:59

MAED 5121 Algebra and Its Applications I

Midterm Examination, Fall 2023

1. Determine if the given relation is an equivalence relation or not. If the relation is an equivalence relation, find its equivalences classes and determine if the quotient set is a countable set or not.  Show your reasoning for full credit.

(a) ~ is the relation on R defined by a ~ b if |a − 8| = |b − 8|, for a, b ∈ R.                                  [9 points]

(b) ◇ is the relation R defined by a◇b if [a] = [b], for a, b ∈ R, where [x] denotes the largest integer not greater than x.                     [9 points]

(c) ≡ is the relation on the power set P(U) of a non-empty universal set U defined by

A ≡ B   if   (A\B) ∪ (B\A) = ∅

           for A, B ∈ P(U). [7 points]

2. Consider the cycles β = (567), σ = (1637) and τ = (1352) in the permutation group S7 .

(a) Express the permutation βσ—1τ as a product of disjoint cycles.                                         [9 points]

(b) Find the permutation (στ)2024 .                                                                                 [9 points]

(c) Determine if there exists a permutation P ∈ S7  such that PστP—1 = βσ .  Show your reasoning for full credit.                                       [7 points]

3. Let G be an abelian group with identity element e. For any two subsets A, B of G, the subset A⊙B is defined by

A ⊙ B = {xy : x ∈ A, y ∈ B} .

(a) Prove that if A, B are subgroups of G, then A ⊙ B is also a subgroup of G.                          [8 points]

(b) Prove that if A, B , C are subgroups of G such that A ⊆ B, then A ⊙ (B ∩ C) = B ∩ (A ⊙ C).        [9 points]

(c) Show by an example that A ⊙ (B ∩ C) = B ∩ (A ⊙ C) may not hold in general if A is not a subset of B.                          [8 points]

4. Prove the following results about groups.

(a) The group (R, +) of all real numbers under addition is isomorphic to the group (R+ , ·) of all positive real numbers under multiplication; i.e., one can nd a bijective homomorphism from R to R+ .       [5 points]

(b) (Z, +) (i.e., the group of integers under addition) is not isomorphic to (Q, +) (i.e., the group of rational numbers under addition). Hint: Consider the solvability of certain simple equation.              [10 points]

(c) If G is a finite group of even order with identity element e, then the equation x2 = e has at least two distinct solutions.         [10 points]


版权所有:编程辅导网 2021 All Rights Reserved 联系方式:QQ:99515681 微信:codinghelp 电子信箱:99515681@qq.com
免责声明:本站部分内容从网络整理而来,只供参考!如有版权问题可联系本站删除。 站长地图

python代写
微信客服:codinghelp