联系方式

  • QQ:99515681
  • 邮箱:99515681@qq.com
  • 工作时间:8:00-21:00
  • 微信:codinghelp

您当前位置:首页 >> Algorithm 算法作业Algorithm 算法作业

日期:2024-10-28 05:46

SMPA 6242

Analytics and Data Analysis for Strategic Communication

Final Project Guidelines

Fall 2024

1    Project Description

The Final Project is a chance to apply the theories and topics students have learned from class towards a real-world statistical question of their choosing.  Students will produce an analysis that is unique to them, of interest to them, and which could appear in a future professional setting.  The project can take many forms, just as communication work does, but must meet a few basic criteria:

•  The deliverable must thoroughly answer a well-defined research/statistical question of the student’schoos- ing

•  The deliverable must be based on original data analysis that the student performs, sourced from a public dataset(s) of the student’s choosing, with the dataset containing at least 1,000 observations

•  The deliverable must include at least 2 regressions as part of the analysis

•  The deliverable should discuss what potential variables are omitted/missing, and how they could affect the results

•  The final deliverable must include at least 3 production quality visualizations (tables, graphs, etc),two of which must be in Tableau. Production quality means something that would appear in a report or paper, and not copy and pasted Stata output

•  The deliverable must identify its intended audience and the language must be appropriate thereto (“Will the audience know what an R2  is or not?”)

The deliverable must clearly present the uncertainty around the results it finds

The deliverable should be well-written and not contain any typos, spelling, or grammatical errors

The final Blackboard submission must include a replication packet, which includes

1.  all raw data used for the project (as a .dta file)

2.  a well-commented .do file that produces the results in the final product

3. the final deliverable

2 Important Dates

The following important dates should be noted and saved:

To-Do Date Time

Final Project Proposal Due

Oct 28

11:59pm

Final Project Workshop

Dec 10

(In-Class)

Final Project Due

Dec 15

11:59pm

3 Deliverables

The Final Project has more than one component due. In sequence, the Final Project will require a:

1. Final Project Proposal (5 pts): Due Oct 28 by 11:59pm to Blackboard. This will be a one or two paragraph

write-up on the proposed topic. The write-up should include:

(a)  The proposed statistical research question

(b)  The proposed audience (who will be reading this?)

(c)  The medium the student will be submitting their Final Project deliverable as (e.g. Twitter/Xthread, Instagram reel, Tik Tok video, podcast, official memorandum, white paper, or something else)

(d)  The data set/source the student is planning to use

(e)  Any questions students have for the professor

2. Final Project Workshop Presentation (5 pts): Taking place in-class on  Dec 10.   Students will create a small presentation for the class on their findings thus far, the direction they intend to head, interesting tid-bits they’ve found in their data set, etc. More details in Section 4, below.

3. Final Project Deliverable (20 pts): Due  Dec  15  by  11:59pm.    All  pieces  of the  Final  Project  are  due including:

(a) the .dta file for the dataset used

(b) the .do file for the code replication

(c) the communication piece in whichever form. students are choosing

4 Final Project Workshop Dec 10 In-Class

The Final Project Workshop is an in-class roundtable presentation of each individual student’s project. Students will come prepared with a slide deck to give a 6 minute presentation on their project.  The presentations will cover:

1. the topic and statistical research question

2.  a Positionality Statement on how the student relates to the research at hand

3. the data and the source of the data

4.  any limitations within the data

5.  regression results, and an interpretation of at least one regression

6.  graphics and data vizzes

7. final slide for Q&A

At the end of each student’s presentation the presenter will field questions from the class.

5    Possible Data Sources

Students will find a publicly available data source to work with. Students should note that a “proper” dataset for this project will be one with over 1,000 observations (rows) and about 6 or more columns of numerical data. Students should shy away from using data sets that have categorical data (words, groupings, etc) because they are harder to run regressions with. Students are welcome to use the below list:

Data Archive from the Data is Plural newsletter

Data from the Kaggle data archive

Data from the Amazon archive

Politics and Sports stuff from FiveThirtyEight

Data from ProPublica

Data from BuzzFeed

Data from cities:

Chicago

Austin

San Francisco

Seattle

New York City

Federal government data:

Center for Medicare and Medicaid

Federal Aviation Administration

National Oceanic and Atmospheric Administration

Data.gov

World Bank Microdata good for international purposes

Sports data from Sports Reference

Bikeshare data from several cities

•  .....and more! Feel free to find your own data set and consult with the professor





版权所有:编程辅导网 2021 All Rights Reserved 联系方式:QQ:99515681 微信:codinghelp 电子信箱:99515681@qq.com
免责声明:本站部分内容从网络整理而来,只供参考!如有版权问题可联系本站删除。 站长地图

python代写
微信客服:codinghelp