联系方式

  • QQ:99515681
  • 邮箱:99515681@qq.com
  • 工作时间:8:00-21:00
  • 微信:codinghelp

您当前位置:首页 >> Algorithm 算法作业Algorithm 算法作业

日期:2024-10-18 12:12

COMP4161 T3/2024

Advanced Topics in Software Verification

Assignment 2

This assignment is released on October 11th, and is due on November 1st 17:59:59.  We will accept Isabelle theory (.thy) files only. You are allowed to make late submissions up to five days (120 hours) after the deadline, but at a cost: -5 marks per day.

The assignment is take-home. This does NOT mean you can work in groups. Each submission is personal. For more information, see the plagiarism policy: https://student.unsw.edu.au/plagiarism Submit using give on a CSE machine:

give  cs4161  a2 files . . .

For example:

give  cs4161  a2  a2.thy

For this assignment, all proof methods and proof automation available in the standard Isabelle distribution is allowed.   This includes, but is not limited to, simp, auto, blast, force, and fastforce.

However, if you’re going for full marks, you shouldn’t use  ”proof” methods that bypass the inference kernel, such as sorry.  We may award partial marks for plausible proof sketches where some subgoals or lemmas are sorried.

If you use sledgehammer, it’s important to understand that the proofs suggested by sledgehammer are just suggestions, and aren’t guaranteed to work.  Make sure that the proof suggested by   sledgehammer actually terminates on your machine  (assuming an average spec machine).  If  not, you can try to reconstruct the proof yourself based on the output, or apply a few manual   steps to make the subgoal smaller before using sledgehammer.

Note: this document contains explanations of the problems and your assignment tasks.  The full set of definitions can be found in the associated Isabelle theory files (this document may not contain all the definitions). You are not allowed to modify the various definitions and the lemma names and their statements provided in the Isabelle theory files, unless you are instructed to do so.  You are however allowed to add appropriate attributes to those lemmas to facilitate automation as you need.  You are also allowed to prove your own additional lemmas and use them in your solutions to the assignment questions.

Hint: make sure that you read through the hints provided at the end of this document.

1   Block Representation of Binary Numbers  (12 marks)

In this assignment, we consider one representation of binary numbers where the bits in a number is segmented into alternating sequences (or blocks) of 1s or 0s. For instance, ”1110011” consists of ”three 1s, two 0s, and two 1s”. Formally, we define such blocks as follows:

datatype block =

Zeros nat j Ones nat

A list of such block represents a binary number if it satifies the following well-formedness con- siderations:

• number 0 should be represented only by an empty list;


•  each block represents non-empty sequence of 0s or 1s;

• blocks of 0s and 1s should alternate in a list.

The first point means that lists such as [Zeros 3] or [Ones 0] are not well-formed.  The second point means that 0 < i should hold for any block Zeros i and Ones i.  The third point says that lists that have consecutive blocks of 1s or 0s, eg.  [Ones  i; Ones j;  ...], are ill-formed.  We name the type of our binary number representation as bnat.  The inductive predicate wf gives the well-formedness conditions as discussed above:

type-synonym bnat = block list

inductive wf :: bnat ) bool where wf-nil: wf []

j wf-ones: i > 0 =) wf [Ones i]

j wf-zeros: i > 0 =) wf blks =) is1hd blks =) wf (Zeros i # blks) j wf-ones2: i > 0 =) wf blks =) is0hd blks =) wf (Ones i # blks)

where each of the primrec functions is1hd and is0hd tests if the head of the given list is a 1-block or 0-block, respectively.

We then define a function to-nat that computes the value as natural number (converts a bnat number to a natural number). Note that we interpret the head of a list as the least significant (block of) digits of the number.

primrec to-nat :: bnat ) nat where to-nat [] = 0

j to-nat (b # blks) = (case b of

Zeros i ) 2^i * (to-nat blks)

j Ones i ) 2^i - 1 + 2^i * (to-nat blks))

(a)  Prove simplification rules for is0hd and list append (@) (1 marks):

is0hd (x @ y) = (if x = [] then is0hd y else is0hd x)

(b)  State and prove similar simplification rules for is1hd and list append (@). (2 marks)

(c)  Prove that is1hd n and is0hd n cannot be the same for any n. (2 marks)

(d)  Prove that, for any well-formed n, the value 0 is represented by [] and nothing else. (4 marks) (e)  Prove that, for any well-formed n, if is1hd n holds, the value of n must be positive. (3 marks)

2 Successor and Predecessor (40 marks)

Next, we define a successor function (succ) and a predecessor function (pred) for bnat. In order to do so, we need to define functions add0s and add1s that add a block of 0s or 1s, respectively, at the head of a bnat number in a correct way, so that, when applied to a well-formed bnat number, those functions will return a well-formed bnat number.

primrec add-block0 :: nat ) block ) block list where add-block0 i (Zeros j) = [Zeros (i+j)]

j add-block0 i (Ones j) = (if i = 0 then [Ones j] else [Zeros i ; Ones j])

primrec add0s :: nat ) bnat ) bnat where add0s i [] = []

j add0s i (b # blks) = (add-block0 i b) @ blks


(a)  Prove simplification rules for applying add0s twice in a row. (2 marks)

(b)  Prove that add0s and add1s return well-formed bnat numbers. (4 marks)

(c)  Prove the correctness of add0s, i.e., the bnat numbers  it return have correct values as natural numbers. (4 marks)

(d)  Prove the correctness of add1s, similarly as above. (5 marks)

Now we can define succ and pred as follows:

primrec succ :: bnat ) bnat where succ [] = [Ones 1]

j succ (b # blks) = (case b of

Zeros i ) add1s 1 (add0s (i-1) blks) | Ones i ) Zeros i # succ blks)

primrec pred :: bnat ) bnat where

pred [] = []

| pred (b # blks) =

(case b of

Ones i ) add0s 1 (add1s (i-1) blks) | Zeros i ) Ones i # pred blks)

(e)  Prove that succ will turn a is0hd list into a is1hd list and vice versa. (4 marks)

(f)  Prove that succ preserves the well-formedness conditions. (3 marks) (g)  Prove the correctness of succ. (4 marks)

(h)  Prove that pred preserves the well-formedness conditions. (4 marks)

(i)  Prove the correctness of pred. (6 marks)

(j)  Prove pred (succ n) = n for a well-formed n. (4 marks)

3 Conversion from Natural Numbers (30 marks)

We now consider converting natural numbers into our block binary representation.  The function from-nat does this conversion using the function succ that we defined in the previous section.

Throughout this assignment it may be helpful to state your own intermediate lemmas. This is

especially the case for parts (c), (d) and (e) of this question.

primrec from-nat :: nat ) bnat where from-nat 0 = []

j from-nat (Suc n) = succ (from-nat n)

(a)  Prove that from-nat generates a well-formed bnat number. (2 marks) (b)  Prove that to-nat is the inverse of from-nat. (2 marks)

(c)  Prove that adding a 0-block (add0s i (from-nat n)) gives the representation of the number 2i * n. (8 marks)

(d)  Prove that a single element 1-block [Ones i] represents the natural number 2i - 1 assuming i > 0. (8 marks)

(e)  Prove that from-nat is the inverse of to-nat for well-formed bnat numbers. (10 marks)

4 Addition and Multiplication (18 marks)

Here we consider addition and multiplication of our block binary representation.  The simple-add below defines such addition that uses an auxiliary worker function with an extra variable.

primrec simple-add-worker :: nat bnat bnat bnat where

simple-add-worker 0 i j = []

j simple-add-worker (Suc fuel) i j =

(if i = [] then j

else simple-add-worker fuel (pred i) (succ j))

definition simple-add :: bnat bnat bnat

where simple-add i j = simple-add-worker (to-nat i + 2) i j

(a)  Prove that simple-add-worker return a well-formed bnat number if its last argument is well-formed. (3 marks)

(b)  Prove the correctness of simple-add-worker. (3 marks)

(c)  Prove the correctness of simple-add. (2 marks)

Now, we can define a multiplication function, using a similar auxiliary function that uses sim- ple-add.

(d)  Complete the definition of simple-mul-worker using simple-add. (3 marks) (e)  Complete the definition of simple-mul. (2 marks)

(f)  Prove the correctness of simple-mul-worker. (3 marks) (g)  Prove the correctness of simple-mul. (2 marks)

5 Hints

•  Many proofs will require induction of one kind or the other.   Other than inducting on datatypes directly, you may find it useful to do induction on inductively defined relations wf. The induction rules for these are automatically generated by Isabelle.

You can apply these induction rules as elimination rules, e.g.  apply  (erule  wf.induct), but a more convenient and flexible alternative is

apply  (induct  rule:  wf.induct)

which allows you to specify which variables should not be all-eliminated using e.g. apply  (induct  arbitrary:  x  y  rule:  wf.induct)

• Not everything needs an induction.

•  The equivalent of spec for the meta-logic universal quantifier, if you need it, is called meta_spec.

• For some exercises, you will likely need additional lemmas to make the proof go through. Part of the assignment is figuring out which lemmas are needed.

•  Make use of the find_theorems command to find library theorems.  You are allowed to use all theorems proved in the Isabelle distribution.


版权所有:编程辅导网 2021 All Rights Reserved 联系方式:QQ:99515681 微信:codinghelp 电子信箱:99515681@qq.com
免责声明:本站部分内容从网络整理而来,只供参考!如有版权问题可联系本站删除。 站长地图

python代写
微信客服:codinghelp