联系方式

  • QQ:99515681
  • 邮箱:99515681@qq.com
  • 工作时间:8:00-21:00
  • 微信:codinghelp

您当前位置:首页 >> Algorithm 算法作业Algorithm 算法作业

日期:2024-08-29 06:05

Department of Mechanical and Aerospace Engineering

TRC4800/MEC4456 Robotics

PC 9: Multi-Variable Control

Problem 1. Derive the computed-torque-control (CTC) scheme and write the control law for the robot in Figure 1. Assume point masses. The dynamics of the system is given by:

Figure 1: An RP manipulator

Problem 2. Specify the feedforward and feedback components of the CTC law derived in problem 1 and explain their roles.

Problem 3. Consider a linear control law (PD controller) based on linearization of the system about an equilibrium point is directly used for a robotic manipulator.

Where Kv and Kp are positive definite matrices and e  = θ θd.

Prove that if θ̇d  = 0, the control law applied to the system renders the equilibrium point θd = 0 globally asymptotically stable.

The Lypunov function is defined as:

Where P is the potential energy.

Problem 4. Suppose a PID computed torque controller law is applied to eliminate nonzero steady-state error, and the error is defined as:

e =  qd  − q

The error dynamics is given by:

Draw the block diagram of the proposed PID-CTC law and derive the system dynamics equation with PID-CTC law, using the parameters below:

m1  = m2  =  1kg         l1  = l2   = 1m

The dynamics of the system (Figure 2) is given by:

Figure 2: An RR manipulator

Problem 5. Since we have proved that the PD control law is asymptotically stable at the equilibrium point θ  = 0, when θ̇d  = 0. Now let’s consider a modified version of the PD control law:

We call it augmented PD control law. Prove that the control law applied to the system is asymptotically stable if, kv > 0, kp > 0, and explain how you would choose E. The Lyapunov function candidate is chosen as:






版权所有:编程辅导网 2021 All Rights Reserved 联系方式:QQ:99515681 微信:codinghelp 电子信箱:99515681@qq.com
免责声明:本站部分内容从网络整理而来,只供参考!如有版权问题可联系本站删除。 站长地图

python代写
微信客服:codinghelp