联系方式

  • QQ:99515681
  • 邮箱:99515681@qq.com
  • 工作时间:8:00-21:00
  • 微信:codinghelp

您当前位置:首页 >> Database作业Database作业

日期:2025-02-12 04:54

BU.232.720 Fixed Income

Empirical Project 1

In this series of (two) projects, you will analyze the building blocks of fixed-income analytics using data of Treasury bond prices and yields.

The following is what you are expected to do in the first project

•  Read the following article (you can download it from our Canvas course site).

John Y. Campbell. “Some Lessons from the Yield Curve,"Journal of Economic Perspectives, Vol. 9, No. 3 (Summer, 1995), 129-152

In particular, read the session of “Understanding the Term Structure" from page 130 to 135; you should be able to understand and explain the concepts in this part.

•  Download the zero coupon yield curves from our Canvas site. These are the log yields yt,τ of ZC bonds for τ = 1y, 2y, ··· , 30y on each date t.

•  Do the following calculations and analyses, explaining the procedures and results.

Construct monthly series, using the end-of-month values, for the sample period of January 1981 to December 2018

Plot the monthly series of the yield curve for maturities of 1y, 2y, ··· , 10y.

In each month, compute the one-year log forward rate ft,τ,1y for maturity τ = 0, 1y, 2y, ··· , 9y. Then plot the monthly series of the 1y forward rate curve.

Compute the modified duration and convexity for τ = 1y, 2y, ··· , 10y. Then plot the monthly series of the two measures.

For all these measures, report their time-series mean and standard deviation as in the following table.

What You Need to Submit

The project report

The code you use in generating all the empirical results in the report

The TA Regression Demonstration Session will teach you the key Python procedures in conducting the data analyses, but you are expected to write your own code!

Some notes that discuss the main Python procedures are be provided; see Canvas announcements.

I will check the code to make sure no one simply copies the code from other people (the code will look somewhat different if one really writes his/her own code)!





版权所有:编程辅导网 2021 All Rights Reserved 联系方式:QQ:99515681 微信:codinghelp 电子信箱:99515681@qq.com
免责声明:本站部分内容从网络整理而来,只供参考!如有版权问题可联系本站删除。 站长地图

python代写
微信客服:codinghelp