联系方式

  • QQ:99515681
  • 邮箱:99515681@qq.com
  • 工作时间:8:00-21:00
  • 微信:codinghelp

您当前位置:首页 >> OS作业OS作业

日期:2025-02-05 05:22

Tutorial EG501V Computational Fluid Dynamics (AY 2023/24)

Tutorial 5. Building a system matrix

Two-dimensional fluid flow can be described by means of a stream function φ(x, y) that obeys the following elliptic

PDE: Consider the two-dimensional contraction as shown in the figure. The left panel of the figure is a cartoon of the streamlines.

The right panel defines the flow geometry and boundary conditions: at the inlet (left) and at the outlet (right); φ = 0  on the entire lower wall; φ = 1 on the upper wall. The figure also defines the discretization. We use dimensionless quantities throughout this problem.

Q1

From the discretization (with  Δx = 1 and Δy = 0.5 ) of the PDE, and from the boundary conditions determine the 10×10 matrix [A] and the 10-dimensional vector b such that the 10-dimensional vector φ containing φk , k = 1…10  satisfies  [A]φ = b . Number the unknowns φk as indicated in the figure.

Q2

The fluid velocity in x andy-direction ( ux and uy ) is related to the stream function according to and The solution to = [0.2322 , 0.2049 , 0.4781 , 0.4542 ,

0.3513 , 0.3389 , 0.7359 , 0.7233 , 0.6800 , 0.6716]. Given this solution, determine ux in points 3 and 6, and determine uy in points 2 and 5 based on central differences approximations.




版权所有:编程辅导网 2021 All Rights Reserved 联系方式:QQ:99515681 微信:codinghelp 电子信箱:99515681@qq.com
免责声明:本站部分内容从网络整理而来,只供参考!如有版权问题可联系本站删除。 站长地图

python代写
微信客服:codinghelp