BSTA011 - BUSINESS STATISTICS
GROUP ASSIGNMENT
This assignment is designed to assist you to achieve the following learning outcomes:
a. Develops a capability to apply standard statistical tools in various business decision contexts within a professionally responsible framework.
b. Locates, select and analyse relevant data, quantitative analytical techniques and resources to support business decision-making.
c. Effectively interprets and communicates results of quantitative analyses for business decision-making.
d. Effectively uses a computer-based data analysis package to critically analyse data.
e. Communicates business information in writing through informal reports and teamwork.
Assignment value: 25%
Group of 3-5 students. The group members must be from the same tutorial. Your tutor will put you in groups in tutorials. In the event that you cannot find any group, let your Lecturer/tutor know asap. You are NOT allowed to complete this assignment by yourself or in groups of less than 3 members.
Submission:
Submission |
Due date |
What to submit |
How to submit |
Soft copy |
Midnight 11:59 PM |
1. Submit cover page with |
CANVAS |
|
Sunday, 04/11/24 |
group number, contribution |
|
|
|
percentages and signatu res in your report and submit as one document (word file or a PDF) 2. The business reports 3. Excel file showing all calculation |
|
Your team have been accepted as interns at Landcom. Landcom manages strategic and complex residential projects. Your first job is to conduct an analysis based on the recent sales price of the three suburbs of New South Wales for the years 2021, 2022 and 2023 fromAll Homes . Your team needs to perform. a comprehensive statistical analysis of the suburbs, which your tutors will suggest.
TASK 1: LOCATE AND SELECT DATA
Q1. Collect and Compute the appropriate descriptive statistics of the “sold house price”, “Sold house land size”, and “sold house number of rooms” for the years 2021,2022 and 2023 of the suburban selected by your tutor. The descriptive statistics measures include central tendency (mean), variability (standard deviation), Mode, Quartiles, Range, and Interquartile range and show the infographics (e.g., pie chart, bar chart, etc.) of 2021, 2022 and 2023 data for the following variables:
(a) Sold house price
(b) Sold house land size
(c) Sold house number of rooms
The sample size should beat least 30 for each year (2021, 2022 and 2023) for each suburb. So, for one suburb, the total at least the number of houses recorded should be 90 for a three-years period.
TASK 2: DATA DESCRIPTION AND ANALYSIS
Q2. Based on the descriptive statistics from Q1, briefly comment on the central tendency and variability of three suburbs for 2021, 2022 and 2023
Combine data from all group members in an Excel spreadsheet and use this collated sample to answer the following questions.
Q3. Choose one suburb and perform. the following task from 2021 and 2022 data: The historical data indicates that the high house prices (more than the average price; You should have the average house price of each suburb from question 1) are more likely to be associated with land size as compare to low house price (Below average house price). What is the probability of a high house price given that the house land size is extended (more than the average land size for the suburb)? What is the probability of low house prices given that the land size is non-extended (Land size below average)? Analyse your collated sample and examine whether it is indeed the case. Show the steps in your analysis (including justification for choice of techniques used and all calculations) and report your findings clearly and use a probability matrix.
Table: Probability matrix for 2021
|
High house price |
Low House price |
Total |
Extended Land size |
|
|
|
Non- extended land size |
|
|
|
Total |
|
|
Grand total |
Table: Probability matrix for 2022
|
High house price |
Low House price |
Total |
Extended Land size |
|
|
|
Non- extended land size |
|
|
|
Total |
|
|
Grand total |
Q4. (a) Choose one suburb and perform the following task from 2021,2022 and 2023 data. It is a common perception that the land size and the number of rooms available influence the house price. Investigate the following relationships using multiple linear regression analysis. (i) Explore the relationship between land size and the house price, (ii) Explore the relationship between the available number of rooms and the house price. Use the multiple linear regression model and interpret the result of p-values of independent variables, multiple R, Adjusted R-squared, physical meaning of co-efficient and significance of “f “statistics.
(b) Using the suburb selected for part (a), conduct a regression analysis with the house prices and external economic factors (cash rate target, inflation rate, and unemployment rate) for the years 2021, 2022, and 2023, utilizing data from the Reserve Bank of Australia (RBA). Apply multiple linear regression models to examine the relationships between these variables.
Interpret the statistical measures derived from the regression models, including the multiple R, adjusted R-squared, and the significance of the F-statistic. Evaluate the importance of the independent variables by interpreting their p-values.
Develop two distinct regression models for task (a) and (b).
Q5. Choose one suburb and perform. the following task from 2022 data: Analyze the frequencies of two variables (House price level and land size) with multiple categories to determine whether the two variables are independent. Conduct Chi-Square Hypothesis test at 0.05 level to ensure that, whether house price level and land size are independent. Use the following table for Chi - square test:
Land size |
House price level |
|
Total |
|
High house price |
Low house price |
|
Extended land size |
|
|
|
Non-Extended land size |
|
|
|
|
|
|
|
Grand total |
|
Q6. What is the average house price of each selected suburb for 2023 (Use the house price average from question 1 and construct a 95% confidence interval for the average house price for each selected suburb of New South Wales for the year 2023)? Note: The population standard deviation of house prices in New South Wales is $20,000.
Q7. A recent study has claimed that the average house price in New South Wales is $1,187,200. Use your collected data to test this claim for each selected suburb for the year 2023 (Note: Use the sample statistics from question 1). Note: The population standard deviation of house prices in New South Wales is $20,000. Is there any evidence to suggest that the average house price has changed at a 5% significance level? Report your findings with clear conclusions and all supporting calculations.
Q8. Develop a rating for the three suburbs assigned to you, based on the provided crime statistics from Sydney Suburban Review . Complete the following tasks:
(i) Define a rating scale for the suburbs based on crime rates. For example:
• A: Suburbs with the lowest crime rates.
• B: Suburbs with moderate crime rates.
• C: Suburbs with the highest crime rates.
To establish the ratings, calculate the average crime incidents for NSW based on 408 suburbans crime average incident provided on Sydney Suburban Review . Suburbs with crime rates above the average should be categorized as C, those around the average as B, and those below the average as A.
(ii)Create visual representations, such as bar charts or maps, to display the crime ratings for each suburb.
(iii) Investigate the influence of crime rates on house prices. Provide a well-supported argument based on relevant evidence and research findings.
版权所有:编程辅导网 2021 All Rights Reserved 联系方式:QQ:99515681 微信:codinghelp 电子信箱:99515681@qq.com
免责声明:本站部分内容从网络整理而来,只供参考!如有版权问题可联系本站删除。