联系方式

  • QQ:99515681
  • 邮箱:99515681@qq.com
  • 工作时间:8:00-21:00
  • 微信:codinghelp

您当前位置:首页 >> OS作业OS作业

日期:2024-06-28 06:49

MATH 237 Online Calculus 3 for Honours Mathematics

Spring 2024

Mini-midterm 2

Due date: 11:30pm, June 28 2024

1.(30 points) Partial derivatives.

(i) (15 points) Determine the differentiability of the following function at p0, 0q:


(ii) (15 points) Suppose z = f(r) and Then use the chain rule to show that

2.(30 points) Suppose g(x,y, z) = 3ln(x + eyz ).

(i)  (10 points) Find the gradient of g.

(ii)  (20 points) Calculate the directional derivative of at (0, 1, 0) in the direction from the point (0, 1, 0) to the point (5, 3, 3).

3.(30 points) Suppose f(x,y) = ln (—2sin2 x + 4cos2 y).

(i)  (15 points) Find the linearization at (0, 0), L(0 ,0)(x,y).

(ii)  (15 points) Find the second order Taylor polynomial at (0, 0), P2 , (0 ,0)(x,y).

4.(10 points) Miscellaneous problems.

(i)  (5 points) Suppose φ(u) is a one-variable function such that for any u ∈ @, Iφ(u)I  ≤ u2 .  Determine the differentiability of f(x,y) = φ(IxyI) at (0, 0).

(ii)  (5 points) Suppose the second order partial derivatives off(x,y) exist. Moreover, we assume f(x,y) > 0 for any x,y. Then show that f(x,y) = g(x)h(y) for some one-variable function g,h if and only if

(Hint: Consider and try to calculate )






版权所有:编程辅导网 2021 All Rights Reserved 联系方式:QQ:99515681 微信:codinghelp 电子信箱:99515681@qq.com
免责声明:本站部分内容从网络整理而来,只供参考!如有版权问题可联系本站删除。 站长地图

python代写
微信客服:codinghelp