联系方式

  • QQ:99515681
  • 邮箱:99515681@qq.com
  • 工作时间:8:00-21:00
  • 微信:codinghelp

您当前位置:首页 >> C/C++编程C/C++编程

日期:2024-10-04 12:03

Visual Analytics

Fall 2024

About the Course

Course Description

This is an application-oriented course aimed at developing skills in getting,exploring, manipulating,analyzing,and presenting business data using data visualizations.It will employ visualization software such as Tableau.

Course Rationale

Traditional methods and tools for data analysis are daunting for most business students.At the same time companies are placing a huge premium on business students with strong analytical  skills.Fortunately,modern data visualization tools have made it possible to easily navigate

through the data analysis pipeline from wrangling to analyzing.One of the key skills for a

business student is to communicate insights from quantitative analysis in a clear but compelling

manner.By making use of popular data visualization tools like Tableau,this course will

overcome student inertia towards analyzing data and enable them to tell effective stories with data.

Teaching Approach

The pedagogical philosophy of this course is built around the principle of learning by doing.

Each analysis concept taught will be complemented by its application.The latter will be enabled by an interactive class demonstration followed by an assignment.

Learning Outcomes

This course is designed to develop skills in getting,exploring,manipulating,analyzing,and presenting business data using data visualizations.Specifically,this course will teach the    student  how to


● visually explore,manipulate and analyze data

● communicate analysis results using effective visualizations

● develop skills in converting data and information into insights and decisions 

·    tell compelling stories with data

·use data visualization software (e.g.,Tableau).

Instructional Material

·Storytelling with Data,Cole Nussbaumer-Knaflic,2015.ISBN:978-1119002253.

● Visual Data Storytelling with Tableau,Lindy Ryan,2018.ISBN:978-0134712833.

Effective Data Visualization,Stephanie Evergreen,2019.ISBN:978-1544350882.

·    The Truthful Art:Data,Charts,and Maps for Communication,Alberto Cairo,2016.ISBN:

978-0321934079.

·    Visual Display of Quantitative Information,Edward Tufte,2001.ISBN:978-0961392147. ·    The Big Book of Dashboards,Steve Wexler,Jeffrey Shaffer,and Andy Cotgreave,2017.

ISBN:978-1119282716.



Method of Assessment

Individual Assignments [5x20=100 points]

Purpose of assignments is to demonstrate application of concepts and methods covered in    prior classes.There are five equally weighted assignments.Details of each assignment will be shared via Classes.Completed assignments should be submitted via a submission link on

Classes before the due date.Grading rubric and assessment details will accompany each assignment.


Exam [200+200=400 points]

The midterm exam is designed to test knowledge of preparing data and constructing effective charts.The final exam will test your understanding of all aspects of this course.

Team Project [200 points]

The team project will offer you an opportunity to demonstrate your mastery of all elements of  this course including preparing data,analyzing it,visualizing it,and putting it alltogether into a cohesive data story and communicating the story to stakeholders.The team project has three  components:Project Proposal,Data Story,and Presentation.This project is to be done by a team of three or four members.

Individual Project [150 points]

The individual project is like the team project in its scope.You must leverage what you have learnt in this class to construct a cohesive data story using a dataset that will be provided to you.


Class Engagement [150 points]

Class engagement is a crucial component of your learning experience in this course.The points allocated for class engagement will be determined by your active involvement in class and the  quality of responses to in-class exercises.Active involvement means being present both

physically and mentally.It involves asking questions,contributing insights,or offering

constructive feedback.Equally important is for engagement to be consistent through the    semester.Sporadic participation,no matter how brilliant,will not be as valuable as regular

steady contributions.In addition to active involvement,class engagement will also be judged by the quality of responses to in-class exercises.These in-class exercises must be done individually, are timed and can only be completed in class.

Semester Grades

Grades will be assigned as follows:

>=900

:A

700-749

:B-

850-899

:A-

650-699

:C+

800-849

:B+

600-649

:C

750-799

:B

<600

:F

General Policies

Schedule

A detailed schedule is available on Classes.This schedule includes week-by-week information on what will be done in class and assignment due dates.This schedule will be adhered to

strictly.In case a change is warranted,you will be informed via Classes.

Makeup policy

Based on the dates laid out in the schedule at the beginning of the semester,it should be

possible for you to plan your schedule so that you don't miss anything.Since assignments may   be done over a span of time rather than on a set date at a set time,there will be no opportunity to make up an assignment.The same is true of Team and Individual Project deliverables.Each     class session will have an in-class exercise which is a key input to class engagement points.By     their very nature,these cannot be made up.That said,missing one in-class exercise will not

have an adverse impact on your class engagement points.Since the exam date is also known ahead of time,in general there will be no makeup policy.However,in case of a dire

unforeseeable emergency and if Iam informed via email,phone,or in person before the exam, an exception may be made.A decision of what qualifies as a dire unforeseeable emergency will be made by me.Finally,requests to take the exam earlier will not be entertained.

Late Submissions

Assessments including Assignments,in-class exercises,and Individual and Team Project Deliverables submitted after the date and time they are due will not be accepted.

Academic Integrity

All students are required to adhere to the statement of academic integrity outlined in the Pace University catalog.Academic  integrity  infractions can  include,but  are  not  limited to,copying    and presentingthe work of another as your own,collaboratingwith others on assignments intended to be done individually,copying the work of others during an exam or in-class


exercise,or completing an in-class assessment (including exam and in-class exercise)when not in class.You may receive a failing grade in any assessment,exam,or course in which an

infraction takes place,and you may be suspended or expelled from the school.When in doubt   about what might be considered an academic integrity infraction,the best course of action is to ask me for clarification.

Extra credit opportunities

Opportunities for extra credit,if any,will be made available to all students equally.Individual requests for extra credit will not be entertained



版权所有:编程辅导网 2021 All Rights Reserved 联系方式:QQ:99515681 微信:codinghelp 电子信箱:99515681@qq.com
免责声明:本站部分内容从网络整理而来,只供参考!如有版权问题可联系本站删除。 站长地图

python代写
微信客服:codinghelp